3x^-3=(7x1/9)

Simple and best practice solution for 3x^-3=(7x1/9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^-3=(7x1/9) equation:


D( x )

x = 0

x = 0

x = 0

x in (-oo:0) U (0:+oo)

3*x^-3 = (7*x^1)/9 // - (7*x^1)/9

3*x^-3-((7*x^1)/9) = 0

(-7/9)*x+3*x^-3 = 0

3*x^-3-7/9*x = 0

x*(3*x^-4-7/9) = 0

3*x^-4 = 7/9 // : 3

x^-4 = 7/27

-4 < 0

1/(x^4) = 7/27 // * x^4

1 = 7/27*x^4 // : 7/27

27/7 = x^4

x^4 = 27/7 // ^ 1/4

abs(x) = (27/7)^(1/4)

x = (27/7)^(1/4) or x = -(27/7)^(1/4)

x = 0

x = 0

x in { 0}

x in { (27/7)^(1/4), -(27/7)^(1/4) }

See similar equations:

| (2-3*i)/(4-i) | | 7x^3=3 | | -3/2(5x-6)12-10x | | 1.9+6=3.1-5 | | (9x-18)=(6x+57) | | 4m+5=3 | | 8*d-4=20 | | (8x+10)=(82) | | Cos^2(3x)+sin^2(x)=cos^2(4x) | | 4x^2+81= | | 4+2y-2x+7y= | | g(15)=2x^15 | | 1.4=-n-12 | | (3x+30)=(x-2) | | g(14)=2x^14 | | Cos(3x)-sin(6x)+sin(2x)-cos(7x)=0 | | u=56-7u | | g(13)=2x^13 | | 16n/7=6 | | 9v+45=14v | | 6y-(-3y)+4-15= | | (2x+6)=(3x+4) | | x^2+8x+16+y^2=9 | | 8v=21+v | | 5w-13=62 | | g(6)=2x^6 | | (z^2-0.5)=(-15.75)^(1/2) | | 5x-14=(24+4x) | | -35=7z-8 | | 7=44.1/x | | M+22=44 | | u+9=-7u+7 |

Equations solver categories